Highway 9 Adaptive Control System in Norman, Oklahoma

OTEA Fall Meeting October 20, 2015

The Presenters

 David Riesland—Traffic Engineer for the City of Norman

 Jeff O'Brian—Business Development with Econolite in Arlington, Texas

The Project

 State Highway 9 east from I-35 has long served as one of the main access avenues to special events at OU.

 The concept of adaptive control adjusts the cycle length and/or the splits "on the fly" to improve mainline flow.

 State Highway 9 is access controlled, for the most part, and appears to be an ideal candidate for adaptive control.

The Project Location

Signalized Intersections

Initial Steps

 The City of Norman contacted Econolite in early 2013 to price an adaptive system on Hwy 9.

- The timing, if approved, would create a capital project in the next budget cycle.
- Initial estimates came in at just under \$50,000 for a six intersection system.
- The Norman City Council approved, as part of the City's FYE 2014 budget, a \$50,000 capital project to create a six-signal adaptive system on Hwy 9.

Initial Steps (Cont.)

- Once Council had approved the FYE 2014 Budget, the City went back to Econolite to create a contract for the work
- In July/August, 2014, it was determined that the initial estimate had failed to include radar units needed to detect the length of potential queues upstream from each signalized intersection

• The cost of the project rose to \$105,000

Initial Steps (Cont.)

- With the estimate for the necessary queue detecting radar equipment in hand, staff went back to Council requesting the additional \$55,000 in funding needed to implement the project.
- Council unanimously approved the increase in the contract amount, as well as for the contract with Econolite, on October 14, 2014.

Initial Steps (Cont.)

- From the beginning, the City desired a mechanism to measure the effectiveness of the adaptive system
- BlueTOAD units were being used by Econolite in Stillwater to measure travel times along specific corridors
- Norman would be allowed to borrow the BlueTOAD devices to measure travel times

• Travel time data could be collected before and after adaptive system deployment

Construction Timeline

- Dec. 22-23, 2014: City forces pulled wire and installed cabinet equipment—Avg. high temperature was 50.5°
- Dec. 26 and 29, 2014: City forces pulled wire and installed cabinet equipment—Avg. high temperature was 53°

De	ecen	nber	2014	4		
	1	12	1	4	ŕ	6
+		9	10	17	12	13
14	15	16	37	14	14	20
21	22	27	24	25	28.	27
28	29	30	31	TA.	_	

Construction Timeline (Cont.)

• Jan. 5-6, 2015: City forces pulled wire and installed cabinet equipment—Avg. high temperature was 43° • Jan. 7-9, 2015: City forces and Econolite installed radar units and programmed—Avg. high temperature was 32.7°

Construction Timeline (Cont.)

- Jan. 12, 2015: City forces worked with Econolite installing BlueTOAD
- High temperature was 34°

Enjoy some photos of the installation!

• Now, on to the technical elements, Jeff.

- Centracs
 Norman
- Remote a controller Video (via
- Add Centr Adaptive
- What else
- Detection Measurem
 - (BT)

<u>Centracs Adaptive</u>

- Original ACS Lite sponsored by FHWA
- Focus on arterial management
- Adjusts Offsets and Splits based on monitored traffic flow (detection)
- Works with existing coordination

Centracs Adaptive

- Splits adjusted based on phase utilization
- Phase utilization determined from stop bar detection
- Unused split time reallocated to busier phases
- Offset adjusted based on green arrival profile
- Flow profile developed from advance detection
- Offset adjusted to optimize vehicles arriving on green
- Changes to split and offset are made in small increments (2-6 seconds)

Detection

- Adaptive requires stop bar detection & at Max queue length detection on mains (lane by lane)
- Existing Autoscope detection (stopbar)
- Need detection beyond max queue lengths

Detection

• Max Queue Lengths at about 1000'

Ruler
Line Path Pro Measure the distance between two points on the ground
Map Length: 999, 16 Feet Ground Length: 999, 24 Heading: 274,62 degrees
Mouse Navigation Save Clear
9
Bi In Arrow

While we were at it...

 Each intersection required detailed information about ALL timing and detection operation (stop bar video and radar)

<u>Measurement</u>

Installed 4
 BlueTOAD's
 Bluetooth devices
 for Travel
 Time/Speed
 history & reports

Measurement—BlueTOAD

— Route WB Jenkins to Imhoff - (2015-02-10 - 2015-02-11)

Route WB Jenkins to Imhoff – Historical Avg of Tue/Wed: From 2015-01-15 to 2015-03-06

Route WB Jenkins to Imhoff – (2015–04–14 – 2015–04–15)

Field Implementation

- All deployments come with anomalies to overcome
- We had a few...
- Radar doesn't need to be in the conventional location – just need range

Field Implementation (Cont.)

- Radar software uses aerial imagery (Google, Bing, etc...) to help with configuration
- BUT... it can't tell you that things are in the path of the radar
- Had to make adjustments to accommodate obstruction

Field Implementation (Cont.)

Waiting for "ON"

- Adaptive ready for ON
- Construction at 24th and McGee
- Construction almost complete at 24th
- I-35 construction ongoing
- BlueTOAD data being collected

Now, back to Norman's perspective, David.

Project Challenge #1

Monroe Elementary School

Challenge #1 Issues

- Monroe Elementary School is located at 1601
 S. McGee Drive in Norman with a student population of 435
- Formal attendance boundary for Monroe Elementary School extends south of Hwy 9
- All the parents arrive at Hwy 9, southbound on McGee, at essentially the same time after they pick up their children in the afternoon

Changes Resulting from Challenge #1

- Set a maximum cap that the Adaptive Control System would only be able to take up to 25 % of the available split from any side street to serve main line movements
- We continued to see improved operations on Hwy 9 but the phone quit ringing about parents with school children not being served on McGee

Project Challenge #2

City of Norman Transfer Station

Challenge #2 Issues

- The City of Norman Sanitation Transfer Station is located at 3901 Chautauqua Ave
- The Transfer Station operates six days a week and utilizes large trucks
- Upon exit, these large trucks are accessing Hwy 9 via a side street

Changes Resulting from Challenge #2

- The arrival patterns of these trucks on the Chautauqua approach to Hwy 9 is very sporadic
- We decided to implement PPLT for the two Chautauqua approaches to Hwy 9 to provide more opportunities for the left-turn traffic on both sides of Hwy 9 (this had been a frequent complaint for a few years)

Project Challenge #3

The University of Oklahoma

Challenge #3 Issues

- The University of Oklahoma is accessed from Hwy 9 by Jenkins, Chautauqua, and Imhoff
- When traffic leaves OU by any of the three routes, the result is the same, it is attempting to access Hwy 9 at a side street
- Many of the same problems faced in Challenge #1 and Challenge #2

Changes Resulting from Challenge #3

- Set a maximum cap that the Adaptive Control System would only be able to take up to 25 % of the available split from any side street to serve main line movements
- We continued to see improved operations on Hwy 9 but the phone quit ringing quite as often about back-ups of traffic onto the OU Campus

Project Challenge #4

ODOT Road Construction at Hwy 9/I-35

Challenge #4 Issues

- The interchanges on I-35 at both Hwy 9 and Lindsey Street are being rebuilt by ODOT
- The construction has impacted the intersection of Hwy 9 and 24th Ave SW
- At times, portions of 24th Ave SW were closed and McGee was used as a detour route

Changes Resulting from Challenge #4

- The Adaptive Control System could not keep up with the constant changes in traffic control and the fact that southbound McGee was beginning to compete as a major movement in the corridor
- We had no alternative but to remove the Adaptive Control System from overall control of corridor movements during those times when 24th Ave SW was closed to key movements

<u>One Last Lesson</u>

- Sometimes when you're out working in the field, the urge takes control and you have to do something quick
- If this happens to you, make sure the wind is at your back
- Right, Jeff?

Questions?

